Direkt zum Inhalt
Login erforderlich
Dieser Artikel ist Abonnenten mit Zugriffsrechten für diese Ausgabe frei zugänglich.

Kosmologie: Die schwarzen Löcher des Urknalls

Schon gleich nach seinem Beginn könnte eine dichte Schar Schwarzer Löcher das junge Universum durchsetzt haben. Viele der Objekte haben vielleicht bis heute überlebt. Sie wären plausible Kandidaten für die unsichtbare und rätselhafte Dunkle Materie.
Einander umkreisende Schwarze Löcher können Physiker inzwischen anhand von Gravitationswellen vermessen. Möglicherweise verraten die Signale sogar, ob die Objekte aus der Urzeit des Alls stammen.

In den Tiefen des Alls umkreisten sich vor mehr als einer Milliarde Jahren zwei Schwarze Löcher auf immer engeren Spiralbahnen und stürzten schließlich ineinander. Der heftige Vorgang erschütterte das Gefüge der Raumzeit und erzeugte Gravitationswellen, die sich mit Lichtgeschwindigkeit in alle Richtungen ausbreiteten. Im September 2015 erreichten die Schwingungen schließlich unseren Planeten und machten sich in den Sensoren des Gravitationswellenobservatoriums LIGO (Advanced Laser Interferometer Gravitational Observatory) in den USA durch ein charakteristisches Signal bemerkbar.

Dieser erste direkte Nachweis von Gravitationswellen bestätigte Albert Einsteins 100 Jahre alte Vorhersage solcher Raumzeitschwingungen – die Einstein allerdings für niemals nachweisbar gehalten hatte. Dem Signal zufolge muss jedes der beiden Schwarzen Löcher 30-mal schwerer als die Sonne gewesen sein. Damit waren die Massen zwei- bis dreimal größer als die von üblichen Schwarzen Löchern, die aus Supernova-Explosionen massereicher Sterne hervorgehen. Konnten derartige Objekte überhaupt aus Sternen entstehen? Und selbst wenn zwei besonders massereiche Sterne unabhängig voneinander als solche Monstren endeten, wäre es – zumindest im Verlauf der vermuteten Entwicklung des Universums – unwahrscheinlich, dass sie anschließend zueinanderfanden und verschmolzen. Darum liegt die Annahme nahe, diese massereichen Schwarzen Löcher könnten auf irgendeine andere Weise entstanden sein, ganz ohne Vorläufersterne. Vielleicht hat LIGO also nicht nur Gravitationswellen entdeckt, sondern etwas noch Erstaunlicheres: Schwarze Löcher, die es bereits gab, bevor sich die ersten Sterne bildeten ...

Kennen Sie schon …

Spektrum - Die Woche – Tierisch gut geträumt

Träume sind nicht uns Menschen vorbehalten, auch Tiere sind während des Schlafs zeitweise in anderen Welten unterwegs. Was passiert dabei im Gehirn, welche Funktion erfüllt das Träumen? Außerdem in dieser »Woche«: Gigantische Leerräume im All liefern wichtige Daten für die astronomischen Forschung.

Spektrum der Wissenschaft – Antimaterie

Hochempfindliche Versuche spüren einer winzigen Asymmetrie im Elektron nach. Sie könnte erklären, warum kurz nach dem Urknall die Materie statt die Antimaterie Oberhand gewonnen hat. Doch dieses hypothetische Dipolmoment müsste man erst einmal messen. Außerdem: In der Krebsmedizin spielen zielgerichtete Behandlungsverfahren eine immer wichtigere Rolle. Zu ihnen gehören Antikörper-Wirkstoff-Konjugate, die Tumorzellen präzise aufspüren und angreifen. Die Ergebnisse der Verhaltensforschung an Insekten zeigen, dass Bienen und andere Sechsbeiner deutlich höhere kognitive Fähigkeiten besitzen als bislang gedacht. Das hat weit reichende ethische Konsequenzen. In Alaska färben sich unberührte Flüsse und Bäche rötlich; ganze Ökosysteme sind in Gefahr. Welche Prozesse löst tauender Permafrost aus?

Sterne und Weltraum – Schwarze Löcher - Gibt es Singularitäten doch nicht?

Der Mathematiker Roy Kerr fand einen vermeintlichen Fehler in der Beschreibung schwarzer Löcher durch Roger Penrose und Stephen Hawking. Lesen Sie, weshalb seine Argumente nicht stichhaltig sind. Der Asteroid Apophis wird sich im April 2029 der Erde dicht annähern. Die ESA plant mit ihrer Mission RAMSES den etwa 350 Meter großen Gesteinsbrocken zu begleiten. Wir stellen die Initiative „Astronomie als Kickstarter“ in Schulen vor und komplettieren unsere Serie „Der Weg zum Deep-Sky-Foto“ anhand konkreter Arbeitsschritte in Bildbearbeitungsprogrammen.

Schreiben Sie uns!

Beitrag schreiben

Wir freuen uns über Ihre Beiträge zu unseren Artikeln und wünschen Ihnen viel Spaß beim Gedankenaustausch auf unseren Seiten! Bitte beachten Sie dabei unsere Kommentarrichtlinien.

Tragen Sie bitte nur Relevantes zum Thema des jeweiligen Artikels vor, und wahren Sie einen respektvollen Umgangston. Die Redaktion behält sich vor, Zuschriften nicht zu veröffentlichen und Ihre Kommentare redaktionell zu bearbeiten. Die Zuschriften können daher leider nicht immer sofort veröffentlicht werden. Bitte geben Sie einen Namen an und Ihren Zuschriften stets eine aussagekräftige Überschrift, damit bei Onlinediskussionen andere Teilnehmende sich leichter auf Ihre Beiträge beziehen können. Ausgewählte Zuschriften können ohne separate Rücksprache auch in unseren gedruckten und digitalen Magazinen veröffentlicht werden. Vielen Dank!

  • Quellen

Quellen

Bird, S. et al.: Did LIGO Detect Dark Matter?. In: Physical Review Letters 116, 201301, 2016

Clesse, S., García-Bellido, J.: Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the Seeds of Galaxies. In: Physical Review D 92, 023542, 2015

Clesse, S., García-Bellido, J.: The Clustering of Massive Prim­ordial Black Holes and Dark Matter: Measuring their Mass Distribution with Advanced LIGO. In: Physics of the Dark Universe 15, S. 142-147, 2017

García-Bellido, J. et al: Density Perturbations and Black Hole Formation in Hybrid Inflation. In: Physical Review D 54, S. 6040-6058, 1996

Kashlinsky, A.: LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies. In: Astrophysical Journal Letters 823, L25, 2016

Bitte erlauben Sie Javascript, um die volle Funktionalität von Spektrum.de zu erhalten.